
 

Background Causal inference – an experiment with random or pseudo-random partitioning of units 
between a treatment and control group – has come to be understood as the gold standard for scientific 
settings where the end goal is intervening in some process to achieve a desired end, as in genetic 
engineering, clinical trials or public policy design. This is for good reason: causal inference is a technique 
for identifying the precise impact of a given intervention on the target outcome, which is essentially 
impossible otherwise due to issues of confounding. Nonetheless a number of issues still plague causal 
inference as a method of inquiry. Perhaps the most important is failure to generalize. We see this 
everywhere from MPRA estimated gene expression not predicting measured expression in cells [1] to the 
numerous nudges that work well in laboratories and fail when scaled [2]. Often these issues of 
generalization are related to a shift in the underlying population tested in the lab and the actual population 
intervened on. This means there is a deep connection between understanding when we should expect 
treatments to translate to results and out-of-distribution prediction problems in the machine 
learning literature. The second major problem with causal inference it is not integrative: information 
from one experiment rarely if ever informs our understanding of another experiment on a similar 
population. A clear consequence is that causal inference has produced a fractured landscape of treatment 
effects without real theoretical connections, especially in the social sciences. Using latent 
representations of experimental units would allow for multitask learning which would effectively 
share information on treatment responses across treated units. 
Related Work Machine Learning and causal inference is an emerging intersection with tremendous 
promise. Most work in the literature is focused on understanding treatment heterogeneity within a given 
study. Usually this is done by building a model to predict the outcome for treated and control units, then 
using that model to predict counterfactual treatment or control outcomes for each unit and taking the 
difference. The distribution of these differences captures the degree of treatment heterogeneity, which is 
often of interest especially in medical contexts where it is important to know if treatment effects are 
driven by broad effects or much higher than average effectiveness in some sub-group. Within this 
literature the closest work to my proposal is [3], which attempts to learn representations to improve the 
quality of these counterfactual predictions but does not focus either on out-of-distribution predictions for 
understanding generalization or learning representations for multiple experimental treatments.  
Proposal Toward extending the literature on machine learning and causal inference to address the 
generalizability of treatments and allow sharing of information across treatment effects I propose to use 
learned representations of experimental units to allow for out-of-distribution prediction with calibrated 
uncertainty estimates and multi-task learning. Calibrated uncertainty in individual predictions should 
allow extrapolating from the experimental setting to the population of interest and looking at the 
confidence intervals to understand the expected range of outcomes. Multi-task learning, and in particular 
using a shared latent representation across experiments should enforce information sharing across 
different experimental settings, formally allowing the results of treatment in one experiment to inform the 
analysis of other experiments.  
Research Plan Much of my work up to this point has been on representation learning of regulatory DNA 
and of political beliefs. In the political context I have found that even without tuning, representations can 
provide more robust out-of-distribution prediction. Along similar lines I have found that multi-task 
learning of latent representations also improves the out-of-distribution predictions. In the genetics context 
my work has shown that Gaussian processes offer well calibrated uncertainty estimation on samples far 
from the training distribution.  
Aim I: Before digging deeper into method development I want to confirm these insights hold across other 
contexts. Does multi-task learning improve the quality of latent representations for out-of-distribution 
prediction in genomics as well as politics? Do Gaussian processes still provide well calibrated uncertainty 
if treated units are companies instead of basepairs? More generally I plan to build simulations to explore 
the dimensions of when and why these ideas hold up and hopefully to develop supporting theory.  



 

Aim II: After confirming the results from my past 
work I want to extend these insights to develop a 
framework for embedding causal inference in deep 
learning. To build the learned representations I plan 
to explore Variational Auto-encoders, Auto-
Encoding Generative Adversarial Networks, and 
comparing to a baseline using multitask learning 
directly and taking the last shared layer as the latent 
representation. The core idea is to use these latent 
representations to predict the outcomes for each 
unit in the control and treated conditions. Because 
of their high-quality uncertainty estimation, I plan 
to use Gaussian processes to make these 
predictions. Of course, if the learning of the latent 
representations is completely independent of outcome prediction there will be no information sharing 
across tasks. So, I am going to leverage another property of Gaussian processes: their differentiability. I 
plan to split training into two phases. The first unsupervised phase will just focus on training the auto-
encoder for learning representations. The second phase will optimize the latent space for the predicting 
the outputs for all experimental settings simultaneously, updating the auto-encoder by back-propagating 
through the Gaussian processes (in the figure these are the yellow arrows pointing to outcomes).  
Aim III: This framework is only useful if it actually works in practice. I want to conduct replications of 
several randomized trials that were first tested in the lab and then scaled. In particular I want to examine 
deworming studies from development economics [4], fixed/growth mindset work from the education 
literature [5], and α-1 adrenergic receptor antagonists for COVID-19 treatments [6]. 
The first of these failed to scale, and the second succeeded with limited effectiveness, and the third is an 
example where the experiment only involves older men but the target population for intervention is the 
general public. If my method correctly recovers the average treatment for these experiments, it would 
confirm the value in robustly extrapolating before taking the costly step of scaling treatments.  
Intellectual Merit Should my approach to out-of-distribution confidence intervals prove successful it 
would have significant implications for the machine learning literature. Similarly, if integrating 
information across experiments proves useful for estimating treatment effects that will be very significant 
for work in causal inference, transforming the way we think about randomized trials. Instead of one-off 
experiments we could engineer large models that integrate as many effects as possible to mutually 
improve our understanding. Even if my main approach does not work as expected, in the process of 
completing this research, I will certainly be able to contribute to our understanding of when out-of-
distribution prediction is easy and when it is hard, and to the literature on learning representations.  
Broader Impacts Understanding when and how treatments effects will generalize when scaled up 
significantly is a crucial question in clinical settings and in public policy. If I am able to establish a 
framework that allows for more precise estimation of treatments when scaled it could greatly improve our 
understanding of who drugs are effective at treating, allowing greater patient understanding of expected 
outcomes and uncertainty. It would also improve the design of government programs, and the cost of 
designing government programs if extrapolation could substitute for running full scale experiments.  
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